Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 491
Filtrar
1.
Sci Total Environ ; : 172521, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641095

RESUMO

Agricultural practitioners, researchers and policymakers are increasingly advocating for integrated pest management (IPM) to reduce pesticide use while preserving crop productivity and profitability. Using selective pesticides, putatively designed to act on pests while minimising impacts on off-target organisms, is one such option - yet evidence of whether these chemicals control pests without adversely affecting natural enemies and other beneficial species (henceforth beneficials) remains scarce. At present, the selection of pesticides compatible with IPM often considers a single (or a limited number of) widely distributed beneficial species, without considering undesired effects on co-occurring beneficials. In this study, we conducted standardised laboratory bioassays to assess the acute toxicity effects of 20 chemicals on 15 beneficial species at multiple exposure timepoints, with the specific aims to: (1) identify common and diverging patterns in acute toxicity responses of tested beneficials; (2) determine if the effect of pesticides on beetles, wasps and mites is consistent across species within these groups; and (3) assess the impact of mortality assessment timepoints on International Organisation for Biological Control (IOBC) toxicity classifications. Our work demonstrates that in most cases, chemical toxicities cannot be generalised across a range of beneficial insects and mites providing biological control, a finding that was found even when comparing impacts among closely related species of beetles, wasps and mites. Additionally, we show that toxicity impacts increase with exposure length, pointing to limitations of IOBC protocols. This work challenges the notion that chemical toxicities can be adequately tested on a limited number of 'representative' species; instead, it highlights the need for careful consideration and testing on a range of regionally and seasonally relevant beneficial species.

3.
Ecol Evol ; 14(4): e11279, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38633519

RESUMO

Wolbachia, one of the most ubiquitous heritable symbionts in lepidopteran insects, can cause mitochondrial introgression in related host species. We recently found mito-nuclear discordance in the Lepidopteran tribe Tagiadini Mabille 1878 from which Wolbachia has not been reported. In this study, we found that 13 of the 46 species of Tagiadini species tested were positive for Wolbachia. Overall, 14% (15/110) of Tagiadini specimens were infected with Wolbachia and nine new STs were found from 15 isolates. A co-phylogenetic comparison, divergence time estimation and Wolbachia recombination analysis revealed that mito-nuclear discordance in Tagiadini species is not mediated by Wolbachia, but Wolbachia acquisition in Tagiadini appears to have occurred mainly through horizontal transmission rather than codivergence.

4.
Microbiol Spectr ; 12(4): e0012824, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38483475

RESUMO

Two Wolbachia strains, wMel and wAlbB, have been transinfected into Aedes aegypti mosquitoes for population replacement with the aim of reducing dengue transmission. Epidemiological data from various endemic sites suggest a pronounced decrease in dengue transmission after implementing this strategy. In this study, we investigated the impact of the Wolbachia strains wMel and wAlbB on Ae. aegypti fitness in a common genetic background. We found that Ae. aegypti females infected with the wMel strain exhibited several significant differences compared with those infected with the wAlbB strain. Specifically, wMel-infected females laid significantly fewer eggs, ingested a lower amount of blood, had a reduced egg production rate, and exhibited a decreased Wolbachia density at a later age compared with mosquitoes infected with the wAlbB strain. Conversely, the wAlbB strain showed only mild negative effects when compared with Wolbachia-uninfected specimens. These differential effects on Ae. aegypti fitness following infection with either wMel or wAlbB may have important implications for the success of population replacement strategies in invading native Ae. aegypti populations in endemic settings. Further research is needed to better understand the underlying mechanisms responsible for these differences in fitness effects and their potential impact on the long-term efficacy of Wolbachia-based dengue control programs.IMPORTANCEThe transmission of arboviruses such as dengue, Zika, and chikungunya is on the rise globally. Among the most promising strategies to reduce arbovirus burden is the release of one out of two strains of Wolbachia-infected Aedes aegypti: wMel and wAlbB. One critical aspect of whether this approach will succeed involves the fitness cost of either Wolbachia strains on mosquito life history traits. For instance, we found that wMel-infected Ae. aegypti females laid significantly fewer eggs, ingested a lower amount of blood, had a reduced egg production rate, and exhibited a decreased Wolbachia density at a later age compared with mosquitoes infected with the wAlbB strain. Conversely, the wAlbB strain showed only mild negative effects when compared with Wolbachia-uninfected specimens. These differential effects on mosquito fitness following infection with either wMel or wAlbB may have important implications for the success of population replacement strategies in invading native Ae. aegypti populations.


Assuntos
Aedes , Dengue , Wolbachia , Infecção por Zika virus , Zika virus , Animais , Feminino , Fertilidade , Dengue/prevenção & controle
5.
Plant Cell Environ ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497544

RESUMO

Damage caused by the rice striped stem borer (SSB), Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), is much more severe on indica/xian rice than on japonica/geng rice (Oryza sativa) which matches pest outbreak data in cropping regions of China. The mechanistic basis of this difference among rice subspecies remains unclear. Using transcriptomic, metabolomic and genetic analyses in combination with insect bioassay experiments, we showed that japonica and indica rice utilise different defence responses to repel SSB, and that SSB exploited plant nutrition deficiencies in different ways in the subspecies. The more resistant japonica rice induced patterns of accumulation of methyl jasmonate (MeJA-part of a defensive pathway) and vitamin B1 (VB1 -a nutrition pathway) distinct from indica cultivars. Using gene-edited rice plants and SSB bioassays, we found that MeJA and VB1 jointly affected the performance of SSB by disrupting juvenile hormone levels. In addition, genetic variants of key biosynthesis genes in the MeJA and VB1 pathways (OsJMT and OsTH1, respectively) differed between japonica and indica rice and contributed to performance differences; in indica rice, SSB avoided the MeJA defence pathway and hijacked the VB1 nutrition-related pathway to promote development. The findings highlight important genetic and mechanistic differences between rice subspecies affecting SSB damage which could be exploited in plant breeding for resistance.

6.
Pest Manag Sci ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38469952

RESUMO

BACKGROUND: Myzus persicae, a serious sap-sucking pest of a large variety of host plants in agriculture, is traditionally controlled using chemical insecticides but there is interest in using biopesticides as restrictions are increasingly placed on the use of broad-spectrum pesticides. RESULTS: Here, we show that in Petri dish experiments, high concentrations of the fungal entomopathogen Beauveria bassiana led to rapid mortality of M. persicae, although at a low concentration (1 × 104 conidia mL-1) there is a hormetic effect in which survival and fecundity are enhanced. Hormetic effects persisted across a generation with reduced development time and increased fecundity in the offspring of M. persicae exposed to B. bassiana. The whole-plant experiment points to a hormetic effect being detected in two out of three tested lines. The impact of these effects might also depend on whether M. persicae was transinfected with the endosymbiont Rickettsiella viridis, which decreases fecundity and survival compared with aphids lacking this endosymbiont. This fecundity cost was ameliorated in the generation following exposure to the entomopathogen. CONCLUSION: Although B. bassiana is effective in controlling M. persicae especially at higher spore concentrations, utilization of this entomopathogen requires careful consideration of hormetic effects at lower spore concentrations, and further research to optimize its application for sustainable agriculture is recommended. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

7.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401527

RESUMO

Following invasion, insects can become adapted to conditions experienced in their invasive range, but there are few studies on the speed of adaptation and its genomic basis. Here, we examine a small insect pest, Thrips palmi, following its contemporary range expansion across a sharp climate gradient from the subtropics to temperate areas. We first found a geographically associated population genetic structure and inferred a stepping-stone dispersal pattern in this pest from the open fields of southern China to greenhouse environments of northern regions, with limited gene flow after colonization. In common garden experiments, both the field and greenhouse groups exhibited clinal patterns in thermal tolerance as measured by critical thermal maximum (CTmax) closely linked with latitude and temperature variables. A selection experiment reinforced the evolutionary potential of CTmax with an estimated h2 of 6.8% for the trait. We identified 3 inversions in the genome that were closely associated with CTmax, accounting for 49.9%, 19.6%, and 8.6% of the variance in CTmax among populations. Other genomic variations in CTmax outside the inversion region were specific to certain populations but functionally conserved. These findings highlight rapid adaptation to CTmax in both open field and greenhouse populations and reiterate the importance of inversions behaving as large-effect alleles in climate adaptation.


Assuntos
Adaptação Fisiológica , Inversão Cromossômica , Animais , Adaptação Fisiológica/genética , Clima , Temperatura , Insetos
8.
J Insect Physiol ; 153: 104619, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38301801

RESUMO

Extreme temperatures threaten species under climate change and can limit range expansions. Many species cope with changing environments through plastic changes. This study tested phenotypic changes in heat and cold tolerance under hardening and acclimation in the melon thrips, Thrips palmi Karny (Thysanoptera: Thripidae), an agricultural pest of many vegetables. We first measured the critical thermal maximum (CTmax) of the species by the knockdown time under static temperatures and found support for an injury accumulation model of heat stress. The inferred knockdown time at 39 °C was 82.22 min. Rapid heat hardening for 1 h at 35 °C slightly increased CTmax by 1.04 min but decreased it following exposure to 31 °C by 3.46 min and 39 °C by 6.78 min. Heat acclimation for 2 and 4 days significantly increased CTmax at 35 °C by 1.83, and 6.83 min, respectively. Rapid cold hardening at 0 °C and 4 °C for 2 h, and cold acclimation at 10 °C for 3 days also significantly increased cold tolerance by 6.09, 5.82, and 2.00 min, respectively, while cold hardening at 8 °C for 2 h and acclimation at 4 °C and 10 °C for 5 days did not change cold stress tolerance. Mortality at 4 °C for 3 and 5 days reached 24.07 % and 43.22 % respectively. Our study showed plasticity for heat and cold stress tolerance in T. palmi, but the thermal and temporal space for heat stress induction is narrower than for cold stress induction.


Assuntos
Termotolerância , Tisanópteros , Animais , Temperatura Baixa , Aclimatação , Temperatura
9.
J Med Entomol ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366894

RESUMO

There is growing interest in insecticide resistance in the mosquito, Aedes albopictus (Skuse), as its potential for spreading diseases is increasing as urbanization and control efforts intensify. Here we review the presence and diversity of mutations in the voltage-sensitive sodium channel (Vssc) gene associated with pyrethroid resistance and report on additional surveys of these mutations in new populations with an analysis of their spread. The known diversity of these mutations has increased in recent years including the identification of 26 non-synonymous mutations, although phenotypic data associating mutations with resistance remain limited. We provide data on mutations in several new locations including those in Timor Leste, Indonesia, and Vanuatu. We use population genomic data from ddRAD analyses of target populations with the 1534C mutation to identify single nucleotide polymorphisms (SNPs) associated with the mutant to test for clustering of SNPs based on the presence of the 1534C mutation rather than population origin. Our findings suggest spread of resistance alleles via genetic invasion, which is further supported by patterns from a genome-wide principal components analysis. These data point to movement of resistance alleles across wide areas with likely impacts on local control options.

10.
iScience ; 27(2): 108942, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38327789

RESUMO

Partial replacement of resident Aedes aegypti mosquitoes with introduced mosquitoes carrying certain strains of inherited Wolbachia symbionts can result in transmission blocking of dengue and other viruses of public health importance. Wolbachia strain wAlbB is an effective transmission blocker and stable at high temperatures, making it particularly suitable for hot tropical climates. Following trial field releases in Malaysia, releases using wAlbB Ae. aegypti have become operationalized by the Malaysian health authorities. We report here on an average reduction in dengue fever of 62.4% (confidence intervals 50-71%) in 20 releases sites when compared to 76 control sites in high-rise residential areas. Importantly the level of dengue reduction increased with Wolbachia frequency, with 75.8% reduction (61-87%) estimated at 100% Wolbachia frequency. These findings indicate large impacts of wAlbB Wolbachia invasions on dengue fever incidence in an operational setting, with incidence expected to further decrease as wider areas are invaded.

11.
Nat Microbiol ; 9(2): 377-389, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38263454

RESUMO

Buruli ulcer, a chronic subcutaneous infection caused by Mycobacterium ulcerans, is increasing in prevalence in southeastern Australia. Possums are a local wildlife reservoir for M. ulcerans and, although mosquitoes have been implicated in transmission, it remains unclear how humans acquire infection. We conducted extensive field survey analyses of M. ulcerans prevalence among mosquitoes in the Mornington Peninsula region of southeastern Australia. PCR screening of trapped mosquitoes revealed a significant association between M. ulcerans and Aedes notoscriptus. Spatial scanning statistics revealed overlap between clusters of M. ulcerans-positive Ae. notoscriptus, M. ulcerans-positive possum excreta and Buruli ulcer cases, and metabarcoding analyses showed individual mosquitoes had fed on humans and possums. Bacterial genomic analysis confirmed shared single-nucleotide-polymorphism profiles for M. ulcerans detected in mosquitoes, possum excreta and humans. These findings indicate Ae. notoscriptus probably transmit M. ulcerans in southeastern Australia and highlight mosquito control as a Buruli ulcer prevention measure.


Assuntos
Aedes , Úlcera de Buruli , Mycobacterium ulcerans , Animais , Humanos , Úlcera de Buruli/epidemiologia , Úlcera de Buruli/genética , Úlcera de Buruli/microbiologia , Mycobacterium ulcerans/genética , Austrália , Genoma Bacteriano , Aedes/genética
12.
Insect Mol Biol ; 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183324

RESUMO

Coping with stressful conditions and maintaining reproduction are two key biological processes that affect insect population dynamics. Small heat shock proteins (sHSPs) are involved in the stress response and the development of insects. The sHsp gene Laodelphax striatellus (Hemiptera: Delphacidae) sHsp 21.5 (LsHsp21.5) showed constitutive, stage- and organ-specific expression in L. striatellus, a pest that damages cultivated rice in east Asia. The expression of LsHsp21.5 was highest in the ovary, with 43.60, 12.99 and 1.45 time higher expression here than in the head, gut and female fat bodies, respectively. The expression of this gene was weakly affected by heat or cold shock. The gene provided in vitro protection against heat damage to malate dehydrogenase and in vivo protection against heat stress in Escherichia coli (Enterobacteriales: Enterobacteriaceae) BL21(DE3) and L. striatellus. Moreover, L. striatellus reproduction decreased by 1.85 times when the expression of LsHsp21.5 was inhibited by RNA interference. The expression of some genes related to reproduction, such as the homologous gene of chorion protein, also declined. These results suggest that LsHsp21.5 expression not only protects other proteins against stress but also helps maintain the stable expression of some reproduction-related genes under non-stressful conditions, with impacts on L. striatellus fecundity.

13.
J Exp Bot ; 75(5): 1493-1509, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37952109

RESUMO

Herbivore-associated elicitors (HAEs) are active molecules produced by herbivorous insects. Recognition of HAEs by plants induces defence that resist herbivore attacks. We previously demonstrated that the tomato red spider mite Tetranychus evansi triggered defence in Nicotiana benthamiana. However, our knowledge of HAEs from T. evansi remains limited. Here, we characterize a novel HAE, Te16, from T. evansi and dissect its function in mite-plant interactions. We investigate the effects of Te16 on spider mites and plants by heterologous expression, virus-induced gene silencing assay, and RNA interference. Te16 induces cell death, reactive oxygen species (ROS) accumulation, callose deposition, and jasmonate (JA)-related responses in N. benthamiana leaves. Te16-mediated cell death requires a calcium signalling pathway, cytoplasmic localization, the plant co-receptor BAK1, and the signalling components SGT1 and HSP90. The active region of Te16-induced cell death is located at amino acids 114-293. Moreover, silencing Te16 gene in T. evansi reduces spider mite survival and hatchability, but expressing Te16 in N. benthamiana leaves enhances plant resistance to herbivores. Finally, Te16 gene is specific to Tetranychidae species and is highly conserved in activating plant immunity. Our findings reveal a novel salivary protein produced by spider mites that elicits plant defence and resistance to insects, providing valuable clues for pest management.


Assuntos
Solanum lycopersicum , Tetranychidae , Animais , Herbivoria , Tetranychidae/fisiologia , Solanum lycopersicum/genética , Folhas de Planta
14.
J Med Entomol ; 61(1): 250-256, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37738428

RESUMO

Wolbachia (Hertig 1936) (Rickettsiales: Ehrlichiaceae) has emerged as a valuable biocontrol tool in the fight against dengue by suppressing the transmission of the virus through mosquitoes. Monitoring the dynamics of Wolbachia is crucial for evaluating the effectiveness of release programs. Mitochondrial (mtDNA) markers serve as important tools for molecular tracking of infected mitochondrial backgrounds over time but require an understanding of the variation in release sites. In this study, we investigated the mitochondrial lineages of Aedes aegypti (Linnaeus 1762) in Jeddah, Saudi Arabia, which is a prospective release site for the "wAlbBQ" Wolbachia-infected strain of this mosquito species. We employed a combination of comprehensive mitogenomic analysis (including all protein-coding genes) and mtDNA marker analysis (cox1 and nad5) using data collected from Jeddah. We combined our mitogenome and mtDNA marker data with those from previous studies to place mitochondrial variation in Saudi Arabia into a broader global context. Our findings revealed the presence of 4 subclades that can be broadly categorized into 2 major mitochondrial lineages. Ae. aegypti mosquitoes from Jeddah belonged to both major lineages. Whilst mitogenomic data offered a higher resolution for distinguishing Jeddah mosquitoes from the wAlbBQ strain, the combination of cox1 and nad5 mtDNA markers alone proved to be sufficient. This study provides the first important characterization of Ae. aegypti mitochondrial lineages in Saudi Arabia and offers essential baseline information for planning future molecular monitoring efforts during the release of Wolbachia-infected mosquitoes.


Assuntos
Aedes , Wolbachia , Animais , Arábia Saudita , Estudos Prospectivos , Mutação , DNA Mitocondrial , Wolbachia/genética , Mosquitos Vetores/genética
15.
Annu Rev Anim Biosci ; 12: 45-68, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37788416

RESUMO

Genomic data are becoming increasingly affordable and easy to collect, and new tools for their analysis are appearing rapidly. Conservation biologists are interested in using this information to assist in management and planning but are typically limited financially and by the lack of genomic resources available for non-model taxa. It is therefore important to be aware of the pitfalls as well as the benefits of applying genomic approaches. Here, we highlight recent methods aimed at standardizing population assessments of genetic variation, inbreeding, and forms of genetic load and methods that help identify past and ongoing patterns of genetic interchange between populations, including those subjected to recent disturbance. We emphasize challenges in applying some of these methods and the need for adequate bioinformatic support. We also consider the promises and challenges of applying genomic approaches to understand adaptive changes in natural populations to predict their future adaptive capacity.


Assuntos
Animais Selvagens , Genômica , Animais , Animais Selvagens/genética
16.
iScience ; 27(1): 108598, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38155780

RESUMO

Mosquitoes are important vectors for transmission of many viruses of public and veterinary health concern. These viruses most commonly have an RNA genome and infect mosquitoes for life. The principal mosquito antiviral response is the RNAi system which destroys virus RNA. Here, we confirm an earlier study that Aedes aegypti mosquitoes infected with positive-stranded RNA arboviruses can transmit specific immunity to their offspring. We show that this trans-generational immunity requires replication of virus RNA and reverse transcription of vRNA to vDNA in the infected parents and intergenerational transfer of vDNA. This vDNA is both genome-integrated and episomal. The episomal vDNA sequences are flanked by retrotransposon long-terminal repeats, predominantly Copia-like. Integrated vDNA sequences are propagated along several generations but specific immunity is effective only for a few generations and correlates with the presence of vRNA and episomal vDNA. This understanding raises new possibilities for the control of important mosquito-borne virus diseases.

17.
J Econ Entomol ; 117(1): 102-117, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38142133

RESUMO

The green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae), is a major pest of brassica plants, with the ability to transmit > 100 viruses. Although the adoption of Integrated Pest Management is increasing, chemical treatment remains the predominant method used to control M. persicae globally. Insecticide seed treatments, typically with neonicotinoid active ingredients, have become commonplace in canola crops, and are viewed as a "softer" alternative to foliar sprays but may nevertheless impact natural enemies of M. persicae. In this study, the effects of canola seed treatments, containing imidacloprid, thiamethoxam, and a mixture of thiamethoxam + lambda-cyhalothrin, were investigated on the parasitoid wasp, Aphidius colemani Viereck (Hymenoptera: Braconidae) and the green lacewing, Mallada signatus (Schneider) (Neuroptera: Chrysopidae), both important natural enemies of M. persicae. Laboratory trials were undertaken using whole plants, with lethal and sublethal effects assessed by measuring several traits. Compared with untreated plants, more aphid mummies were produced and more A. colemani were reared on plants treated with thiamethoxam + lambda-cyhalothrin and more aphid mummies were produced on imidacloprid plants. Imidacloprid reduced the time A. colemani spent searching for M. persicae and thiamethoxam reduced its cleaning time. However, after A. colemani were removed from treated plants, there were no such effects observed, suggesting these impacts were relatively short-lived. We found no significant effects of seed treatments on M. signatus. These results point to the complexity of ecotoxicology studies involving multiple trophic levels and indicate that seed treatments may have variable impacts on key fitness traits of natural enemies.


Assuntos
Afídeos , Inseticidas , Neonicotinoides , Nitrilas , Nitrocompostos , Piretrinas , Vespas , Animais , Inseticidas/farmacologia , Tiametoxam , Comportamento Predatório , Controle Biológico de Vetores/métodos , Sementes
18.
bioRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38105949

RESUMO

At least half of all insect species carry maternally inherited Wolbachia alphaproteobacteria, making Wolbachia the most common endosymbionts in nature. Wolbachia spread to high frequencies is often due to cytoplasmic incompatibility (CI), a Wolbachia-induced sperm modification that kills embryos without Wolbachia. Several CI-causing Wolbachia variants, including wMel from Drosophila melanogaster, also block viruses. Establishing pathogen-blocking wMel in natural Aedes aegypti mosquito populations has reduced dengue disease incidence, with one study reporting about 85% reduction when wMel frequency is high. However, wMel transinfection establishment is challenging in many environments, highlighting the importance of identifying CI-causing Wolbachia variants that stably persist in diverse hosts and habitats. We demonstrate that wMel-like variants have naturally established in widely distributed holometabolous dipteran and hymenopteran insects that diverged approximately 350 million years ago, with wMel variants spreading rapidly among these hosts over only the last 100,000 years. Wolbachia genomes contain prophages that encode CI-causing operons (cifs). These cifs move among Wolbachia genomes - with and without prophages - even more rapidly than Wolbachia move among insect hosts. Our results shed light on how rapid host switching and horizontal gene transfer contribute to Wolbachia and cif diversity in nature. The diverse wMel variants we report here from hosts present in different climates offer many new options for broadening Wolbachia-based biocontrol of diseases and pests.

19.
BMC Genomics ; 24(1): 657, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914998

RESUMO

Wolbachia is a genus of maternally inherited endosymbionts that can affect reproduction of their hosts and influence metabolic processes. The pollinator, Valisia javana, is common in the male syconium of the dioecious fig Ficus hirta. Based on a high-quality chromosome-level V. javana genome with PacBio long-read and Illumina short-read sequencing, we discovered a sizeable proportion of Wolbachia sequences and used these to assemble two novel Wolbachia strains belonging to supergroup A. We explored its phylogenetic relationship with described Wolbachia strains based on MLST sequences and the possibility of induction of CI (cytoplasmic incompatibility) in this strain by examining the presence of cif genes known to be responsible for CI in other insects. We also identified mobile genetic elements including prophages and insertion sequences, genes related to biotin synthesis and metabolism. A total of two prophages and 256 insertion sequences were found. The prophage WOjav1 is cryptic (structure incomplete) and WOjav2 is relatively intact. IS5 is the dominant transposon family. At least three pairs of type I cif genes with three copies were found which may cause strong CI although this needs experimental verification; we also considered possible nutritional effects of the Wolbachia by identifying genes related to biotin production, absorption and metabolism. This study provides a resource for further studies of Wolbachia-pollinator-host plant interactions.


Assuntos
Ficus , Wolbachia , Ficus/genética , Wolbachia/genética , Biotina/genética , Simbiose/genética , Filogenia , Elementos de DNA Transponíveis/genética , Tipagem de Sequências Multilocus , Prófagos/genética , Reprodução
20.
Insect Sci ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38010047

RESUMO

The brown planthopper (BPH, Nilaparvata lugens) is a notorious sap-sucking insect pest that damages rice (Oryza sativa) plants throughout Asia. During BPH feeding, saliva enters rice plant tissues, whereas during oviposition egg-associated secretions (EAS) are deposited in damaged plant tissue. Dynamic changes in rice to planthopper salivary effectors have been widely reported. However, the effects of EAS from planthopper on rice immunity remains largely unexplored. In this study, we found that both infestation of rice by gravid BPH female adults and treatment with the EAS elicited a strong and rapid accumulation of jasmonic acid (JA), JA-isoleucine, and hydrogen peroxide in rice. EAS enhanced plant defenses not only in rice but also in tobacco, and these impaired the performance of BPH on rice, as well as the performance of aphids and whiteflies on tobacco. High-throughput proteome sequencing of EAS led to 110 proteins being identified and 53 proteins with 2 or more unique peptides being detected. Some proteins from BPH EAS were also found in the salivary proteome from herbivores, suggesting potential evolutionary conservation of effector functions across feeding and oviposition; however, others were only identified in EAS, and these are likely specifically related to oviposition. These findings point to novel proteins affecting interactions between planthoppers and rice during oviposition, providing an additional source of information for effector studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...